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We propose to employ the quasi-isotropic metamaterial �QIMM� slab to construct a polarization insensitive
lens, in which both E- and H-polarized waves exhibit the same refocusing effect. For shallow incident angles,
the QIMM slab will provide some degree of refocusing in the same manner as an isotropic negative index
material. The refocusing effect allows us to introduce the ideas of paraxial beam focusing and phase compen-
sation by the QIMM slab. On the basis of angular spectrum representation, a formalism describing paraxial
beams propagating through a QIMM slab is presented. Because of the negative phase velocity in the QIMM
slab, the inverse Gouy phase shift and the negative Rayleigh length of paraxial Gaussian beam are proposed.
We find that the phase difference caused by the Gouy phase shift in vacuum can be compensated by that caused
by the inverse Gouy phase shift in the QIMM slab. If certain matching conditions are satisfied, the intensity
and phase distributions at object plane can be completely reconstructed at image plane. Our simulation results
show that the superlensing effect with subwavelength image resolution could be achieved in the form of a
QIMM slab.
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I. INTRODUCTION

About 40 years ago, Veselago first introduced the concept
of left-handed material �LHM� in which both the permittivity
� and the permeability � are negative �1�. He predicted that
LHM would have unique and potentially interesting proper-
ties, such as the negative refraction index, the reversed Dop-
pler shift and the backward Cerenkov radiation. Veselago
pointed out that electromagnetic waves incident on a planar
interface between a regular material and a LHM will undergo
negative refraction. Hence a LHM planar slab can act as a
lens and focus waves from a point source. LHM did not
receive much attention as it only existed in a conceptual
form. After the first experimental observation of negative
refraction using a metamaterial composed of split ring reso-
nators �SRRs� �2,3�, the study of such materials has received
increasing attention over the last few years. While negative
refraction is most easily visualized in an isotropic metama-
terial �2–6�, negative refraction can also be realized in pho-
tonic crystals �7–10� and anisotropic metamaterials �11–19�
have also been reported.

Recently, Pendry extended Veslago’s analysis and further
predicted that a LHM slab can amplify evanescent waves and
thus behaves like a perfect lens �20�. He proposed that the
amplitudes of evanescent waves from a near-field object
could be restored at its image. Therefore, the spatial resolu-
tion of the superlens can overcome the diffraction limit of
conventional imaging systems and reach the subwavelength
scale. The great research interests were initiated by the revo-
lutionary concept. More recently, the anisotropic metamate-
rials have been proved to be good candidates for slab lens
application �21–24�. Although the focusing is imperfect, the
substantial field intensity enhancement can readily be ob-
served. In these cases, the anisotropic metamaterials under
consideration are characterized by a hyperboloid dispersion

relation, and the focusing is restricted to either E- or
H-polarized radiation. The recent development in quasi-
isotropic metamaterial �QIMM� offers us further opportuni-
ties to extend the previous work and further predict that both
E- and H-polarized waves can be refocused.

The main purpose of the present work is to construct a
polarization insensitive lens by a QIMM slab. For shallow
incident angles the QIMM slab will provide some degree of
refocusing in the same manner as an isotropic LHM slab. We
are particularly interested in exploiting the polarization in-
sensitive effect. First, starting from the representation of the
plane-wave angular spectrum, we derive the propagation of
paraxial beams in the QIMM slab. Our formalism permits us
to introduce ideas for beam focusing and phase compensa-
tion of paraxial beams by using the QIMM slab. Next we
want to introduce the inverse Gouy phase shift and negative
Rayleigh length when waves are propagating in the QIMM
slab. As an example, we obtain the analytical description for
a Gaussian beam propagating through a QIMM slab. We find
that the phase difference caused by the Gouy phase shift in
vacuum can be compensated by that caused by the inverse
Gouy phase shift in the QIMM slab. If certain matching con-
ditions are satisfied, the intensity and phase distributions at
object plane can be completely reconstructed at the image
plane. Finally, we will discuss what happens when the eva-
nescent wave transmission is through the QIMM slab.

II. POLARIZATION INSENSITIVE METAMATERIAL

Before we consider the polarization insensitive lens, we
first analyze what is the QIMM. For anisotropic materials,
one or both of the permittivity and permeability are second-
rank tensors. In the following we assume that both the per-
mittivity and permeability tensors are simultaneously diago-
nalizable:*Electronic address: hailuluo@gmail.com
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� = ��x��� 0 0

0 �y��� 0

0 0 �z���
�, � = ��x��� 0 0

0 �y��� 0

0 0 �z���
� ,

�1�

where � j and � j are the relative permittivity and permeability
constants in the principal coordinate system �j=x ,y ,z�. It
should be noted that the real anisotropic metamaterial con-
structed by SRRs is highly dispersive, both in spatial sense
and frequency sense �13,17,21,22�. So these relative values
are functions of the angle frequency �.

Following the standard procedure, we consider a mono-
chromatic electromagnetic field E�r , t�=Re�E�r�exp�−i�t��
and B�r , t�=Re�B�r�exp�−i�t�� of angular frequency � inci-
dent from vacuum into the anisotropic metamaterial. The
field can be described by Maxwell’s equations �25�

� � E = −
�B

�t
, B = �0� · H ,

� � H =
�D

�t
, D = �0� · E . �2�

The previous Maxwell’s equations can be combined in a
straightforward way to obtain the well-known equation for
the complex amplitude of the electric field, which reads

� � ��−1 · � � E� +
1

c2

�2D

�t2 = 0, �3�

where c is the speed of light in vacuum.
In the principal coordinate system, Maxwell’s equations

yield a scalar wave equation. In free space, the accompany-
ing dispersion relation has the familiar form

kx
2 + ky

2 + kz
2 =

�2

c2 , �4�

where kj is the j component of the incident wave vector.
We note that the Maxwell’s equations are symmetrical in

electric and magnetic fields. So as far as Maxwell’s equa-
tions is concerned, what we can do for electricity we can also
do for magnetism. To achieve the polarization insensitive
effect, we will focus our interest on the anisotropic metama-
terial, in which the permittivity and permeability tensor ele-
ments satisfy the condition

�x���
�x���

=
�y���
�y���

=
�z���
�z���

= C �C � 0� , �5�

where C is a constant. A careful calculation of the Maxwell’s
equations gives the dispersion relation

� qx
2

�y�z
+

qy
2

�x�z
+

qz
2

�y�x
−

�2

c2 �� qx
2

�z�y
+

qy
2

�z�x
+

qz
2

�x�y
−

�2

c2 � = 0,

�6�

where qj represents the j component of transmitted wave
vector. The above equation can be represented by a three-
dimensional surface in wave-vector space. This surface is

known as the normal surface and consists of two shells �25�.
Under the condition of Eq. �5�, we can find E- and
H-polarized waves exhibit the same wave-vector surface.
Thus the anisotropic medium can also be regarded as QIMM
�26,27�. Clearly, we can find the dispersion surface has the
following two types: ellipsoid and double-sheeted hyperbo-
loid, as show in Fig. 1.

We are currently investigating the possibilities for the
manufacture of the QIMM. In fact, it is now conceivable that
a metamaterial can be constructed whose permittivity and
permeability values may be designed to vary independently
and arbitrarily throughout a metamaterial, taking positive or
negative values as desired. Hence the permittivity and per-
meability tensor elements of QIMM can be controlled by
modulating the length scale of the SRRs. The permittivity
� j��� and permeability � j��� can be approximated by the
Lorentz model. We trust that the QIMM can be constructed,
because similar technology has been exploited in anisotropic
metamaterial �5,15,17,19�. In addition, photonic crystals
might be a good candidate for constructing a QIMM. The
periodicity in photonic crystals is on the order of the wave-
length, so that the distinction between refraction and diffrac-
tion is blurred. Nevertheless, many dispersion relationships
can be realized in photonic crystals, including ranges where
the frequency disperses negatively with wave vector as re-
quired for a negative refraction �7–10�.

Now we want to enquire: whether E- and H-polarized
waves exhibit the same propagation characteristic. To answer
the question we first discuss the transmission of the wave
vector. We choose the z axis to be normal to the interface, the
x and y axes locate at the plane of the interface. The
z-component of the transmitted wave vector can be found by
the solution of Eq. �6�, which yields

FIG. 1. �Color online� �a� The QIMM with ellipsoid wave-
vector surface; �b� the QIMM with double-sheeted wave-vector
surface.
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qz
E = �	�y�xk0

2 − �y�x� qx
2

�y�z
+

qy
2

�x�z
� , �7�

qz
H = �	�x�yk0

2 − �x�y� qx
2

�z�y
+

qy
2

�z�x
� , �8�

for E- and H-polarized waves, respectively. Here k0=� /c is
the wave number in vacuum and �= ±1. This choice of sign
ensures that power propagates away from the boundary to
the +z direction.

Without loss of generality, we assume the wave vector
locates at the x-z plane �ky =qy =0�. The incident angle of
light is given by

�I = tan−1� kx

kz
� . �9�

The values of refractive wave vector can be found by using
boundary conditions and dispersion relations. The refractive
angle of the transmitted wave vector or phase of E- and
H-polarized waves can be written as

	P
E = tan−1�qx

E

qz
E�, 	P

H = tan−1�qx
H

qz
H� . �10�

Substituting Eqs. �7� and �8� into Eq. �10�, we can easily find
that E- and H-polarized waves propagates with the same
wave vector or phase velocity.

In the next step, let us discuss the transmission of energy
flux. It should be noted the actual direction of light is
determined by the time-averaged Poynting vector S
= 1

2 Re�E*�H�. For E- and H-polarized waves, the transmit-
ted Poynting vector ST is given by

ST
E = Re�TE

2E0
2qx

E

2��z
ex +

TE
2E0

2qz
E

2��x
ez� , �11�

ST
H = Re�TH

2 H0
2qx

H

2��z
ex +

TH
2 H0

2qz
H

2��x
ez� , �12�

where TE and TH are the transmission coefficients for E- and
H-polarized waves, respectively. The refraction angle of
Poynting vector of E- and H-polarized incident waves can be
obtained as

	S
E = tan−1�STx

E

STz
E �, 	S

H = tan−1�STx
H

STz
H � . �13�

Combining Eqs. �10� and �13� we can easily find that E- and
H-polarized waves have the same Poynting vector. As for the
QIMM slab, the refraction at the second interface can be
investigated by similar procedures.

By now, we know that E- and H-polarized waves propa-
gate with same wave vector and Poynting vector. It is a sig-
nificantly different property from general anisotropic media.
Note that there is a bending angle between q and S, and
therefore q, E, and H do not form a strictly right-handed or
left-handed system in QIMM. Hence it is also different from
isotropic media. For this reason, this kind of special aniso-
tropic media is regarded as quasi-isotropic. It should be men-

tioned that if C
0 in Eq. �5�, E- and H-polarized waves will
exhibit the same single-sheeted dispersion relation. While the
two polarized waves will undergo different amphoteric re-
fraction, the special anisotropic media cannot be regarded as
quasi-isotropic �27�.

Now we are in the position to study the negative refrac-
tion in the QIMM. Unlike in isotropic media, the Poynting
vector in the QIMM is neither parallel nor antiparallel to the
wave vector, but rather makes either an acute or an obtuse
angle with respect to the wave vector. In general, to distin-
guish the positive and negative refraction in QIMM, we must
calculate the direction of the Poynting vector with respect to
the wave vector. Positive refraction means qx ·ST�0, and
negative refraction means qx ·ST
0. From Eqs. �11� and
�12� we get

qx
E · ST

E =
TE

2E0
2qx

2

2��z
, qx

H · ST
H =

TH
2 H0

2qx
2

2��z
. �14�

The negative refraction phenomenon is one of the most in-
teresting properties of the QIMM. We can see that the re-
fracted waves will be determined by �z for E-polarized inci-
dent waves and �z for H-polarized incident waves.

Because of the importance of negative refraction in refo-
cusing effect, we are interested in the two types of QIMM,
which can be formed from appropriate combinations of ma-
terial parameter tensor elements.

Type I. In this case all of the � j and � j are negative. The
frequency contour is an ellipse as shown in Fig. 2�a�. Here
kz ·qz
0 and qx ·ST
0, so the refraction angle of wave vec-
tor and Poynting vector are always negative.

Type II. In this case �x�0, �y �0, and �z
0. The fre-
quency contour is a double-sheeted hyperbola as depicted in
Fig. 2�b�. Here kz ·qz�0 and qx ·ST
0. It yields that the
refraction of Poynting vector refraction is always negative
even if the wave-vector refraction is positive.

As noted above, the Poynting vector will exhibit negative
refraction in the two types of QIMM. The negative refraction
is the important effect responsible for the slab lens. Hence,
the two kinds of QIMM can be employed to construct a
polarized insensitive lens.

III. THE PARAXIAL MODEL OF BEAM PROPAGATION

In this section, we consider the slab lens constructed by
the QIMM. As depicted in Fig. 3, the QIMM slab in region 2
is surrounded by vacuum in region 1 and region 3. A point
source is placed on the object plane z=0. A single ray will
pass the interfaces z=a and z=a+d before it reaches the
image plane z=a+b+d. Let us investigate what happens
when the single ray passes through the QIMM slab. Because
of the anisotropy the ray incident for different angle will
exhibit different image plane.

First, we explore the aberration effect caused by the an-
isotropic effect. Subsequent calculations of Eq. �13� give the
relationship between sin �I and sin 	s by

sin2 	S
E =

�x
2 sin2 �I

�y�z
2 + ��x − �z�sin2 �I

, �15�
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sin2 	S
H =

�x
2 sin2 �I

�y�z
2 + ��x − �z�sin2 �I

. �16�

Note that the expressions are sightly different from those in
conventional uniaxial crystal �24�. It is instructive to com-
pare these results with Snell’s law, which for refraction from
vacuum into an isotropic medium, gives sin �I / sin 	s=n,
where n represents the refractive index of the refracting me-
dium. Evidently, in the present case we can find the relation-
ship between sin �I and sin 	s is nonlinear, which is caused
by the anisotropic effect �x��z or �x��z. The nonlinear
relationship will result in a significant aberration effect in the
image plane, hence the achievable resolution of image is
limited.

Next, we want to discuss another aberration effect caused
by frequency dispersion. For a certain incident angle, the ray

with different frequency will exhibit different image plane as
shown in Fig. 4. We assume that both �z��� and �z��� are
approximated by the Lorentz model. The other tensor ele-
ments components are approximated as constants. The reso-
nated frequency, plasma frequency, and damping constant
are identical in all respects to those utilized in Ref. �17�.
Ignoring the metallic structure, the other tensor elements as-
sume the values of the background material which is domi-
nantly air. Obviously the frequency dispersion of �z��� and
�z��� will place some practical limitations on the resolution
of image. Fortunately the limitations can be reduced, if the
ray incident is at a small angle. The significant effect has
been illustrated in Fig. 4. It is interesting to note that the
image distance will slowly vary with frequency in a certain
band.

Remarkable as the QIMM slab lens is it suffers from
some problem: how to cancel the aberration effect? Does the
polarization insensitive lens have any use, if the image is not
imperfect? The main effect of anisotropy associated with
QIMM will limit the resolution of the image. Although the
image is imperfect, we trust that the reconstructed effect of
intensity and phase in paraxial regime will lead to some po-
tential applications: Such as the QIMM slab can be used to

FIG. 2. The frequency contours of isotropic and quasi-isotropic
media: �a� The circle and ellipse represent the frequency contours of
vacuum and quasi-isotropic media, respectively. Both the wave vec-
tor and the energy flow exhibit negative refraction. �b� The circle
and hyperbola denote the frequency contours of vacuum and quasi-
isotropic media, respectively. The wave vector undergoes a positive
refraction, while the energy flow undergoes a negative refraction.

FIG. 3. The ray tracing picture showing the focussing by QIMM
slab. The QIMM slab is surrounded by vacuum in region 1 and
region 3. The solid line and dashed-dotted lines are the theoretical
objective and focusing planes, respectively.

FIG. 4. For a certain incident angle, the ray with different fre-
quency f =� /2� will exhibit different image plane. Note that for
smaller incident angles, the QIMM slab will provide some degree
of frequency insensitive in a certain GHz band.
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provide phase compensation and beam focusing in the cavity
resonator. Furthermore, sight anisotropy in the QIMM slab
lens can improve the beam parameter. Most importantly, the
QIMM can be used to design polarization-insensitive modu-
lators and polarization-insensitive all-optical switching in fi-
ber communication system. Hence it is very desirable to in-
vestigate the polarization insensitive effect in the paraxial
regime.

From a mathematical point of view, the approximate
paraxial expression for the field can be obtained by the ex-
pansion of the square root of qz to the first order in 
q�
 /q
�29–31�, which yields

qz
E = �	�y�xk0 − ��	�y�xkx

2

2�y�zk0
+

�	�y�xky
2

2�x�zk0
� , �17�

qz
H = �	�x�yk0 − ��	�x�ykx

2

2�z�yk0
+

�	�x�yky
2

2�z�xk0
� , �18�

where we have introduced the boundary condition q�=k�.
From Eqs. �17� and �18� we can easily find that for shallow
incident angles the QIMM slab will provide some degree of
refocusing in the same manner as an isotropic LHM. Hence
the aberration effect can be cancelled in paraxial beam re-
gion. The interesting property allow us to introduce the idea
to construct a QIMM slab lens in paraxial beam region.

Equation �3� can be conveniently solved by employing the
Fourier transformations, so the complex amplitudes in
QIMM for E- and H-polarized beams can be conveniently
expressed as

E�r�,z� =� d2k�Ẽ�k��exp�ik� · r� + iqz
Ez� , �19�

H�r�,z� =� d2k�H̃�k��exp�ik� · r� + iqz
Hz� . �20�

Here r�=xex+yey, k�=kxex+kyey, and ej is the unit vector in
the j direction.

Substituting Eqs. �17� and �18� into Eq. �19� and �20�,
respectively, we obtain

E�r�,z� = exp�i�	�x�yk0z� � d2k� � exp�ik� · r�

− � �	�y�x

2�y�zk0
kx

2 +
�	�y�x

2�x�zk0
ky

2�Ẽ�k�� , �21�

H�r�,z� = exp�i�	�x�yk0z� � d2k� � exp�ik� · r�

− � �	�y�x

2�z�yk0
kx

2 +
�	�y�x

2�z�xk0
ky

2�H̃�k�� . �22�

The fields Ẽ�k�� and H̃�k�� in Eqs. �21� and �22� are related
to the boundary distributions of the fields by means of the
relation

Ẽ�k�� =� d2r�E�r�,0�exp�ik� · r�� , �23�

H̃�k�� =� d2r�H�r�,0�exp�ik� · r�� , �24�

for E- and H-polarized beams, respectively. Evidently, Eqs.
�23� and �24� are standard two-dimensional Fourier trans-
form �28�. In fact, after the field distribution in the plane
z=0 is known, Eqs. �21� and �22� provide the expression of
the E- and H-polarized field in the space z�0, respectively.

Since our attention will be focused on beam propagating
along the +z direction, we can write the paraxial fields as

E�r�,z� = AE�r�,z�exp�i�	�y�xk0z� , �25�

H�r�,z� = AH�r�,z�exp�i�	�x�yk0z� , �26�

where the field A�r� ,z� is the slowly varying envelope am-
plitude which satisfies the parabolic equation

�i
�

�z
+ � �	�y�x

2�y�zk0

�2

�x2 +
�	�y�x

2�x�zk0

�2

�y2�AE�r�,z� = 0,

�27�

�i
�

�z
+ � �	�x�y

2�z�yk0

�2

�x2 +
�	�x�y

2�z�xk0

�2

�y2�AH�r�,z� = 0.

�28�

Under the quasi-isotropic condition of Eq. �5�, we can easily
find that E- and H-polarized paraxial field exhibit the same
propagating characteristics in paraxial regime. The interest-
ing properties allow us to introduce the idea to construct a
polarization lens by the QIMM slab. For simplify, we intro-
duce the effective refraction indexes,

nx = �
�y�z

	�y�x

, ny = �
�x�z

	�y�x

. �29�

From Eqs. �27� and �28� we can find that the field of paraxial
beams in QIMM can be written in the similar way to that in
regular material, while the sign of the effective refraction
index could be reversed. To simplify the proceeding analy-
ses, we will focus our attention on the QIMM with ellipsoid
frequency contour.

IV. BEAM FOCUSING BY POLARIZATION
INSENSITIVE LENS

In the preceding section we have understood both E- and
H-polarized beams have the same propagation characteristic
in QIMM slab. Hence we do not wish to get involved in the
trouble to discuss the focusing effect of two polarized waves.
Instead, we will investigate the analytical description for the
E-polarized beam with a boundary Gaussian distribution.
This example allows us to describe the refocusing features of
beam propagation in the QIMM slab. To be uniform through-
out the following analysis, we introduce different coordinate
transformations zi

*�i=1,2 ,3� in the three regions, respec-
tively. First we want to explore the field in region 1. Without
any loss of generality, we assume that the input waist locates
at the object plane z=0. The fundamental Gaussian spectrum
distribution can be written in the form

CONSTRUCTION OF A POLARIZATION INSENSITIVE… PHYSICAL REVIEW E 75, 026601 �2007�

026601-5



Ẽ1�k�� =
w0E0

	2�
exp�−

k�
2 w0

2

4
� , �30�

where w0 is the spot size. The Rayleigh lengths given by
zR=k0w0

2 /2. By substituting Eq. �30� into Eq. �19�, the field
in the region 1 can be written as

E1�r�,z1
*� =

w0E0

	w1xw1y

exp�− � x2

w1x
2 +

y2

w1y
2 � + i�1 , �31�

w1x = w0	1 + � z1x
*

L1x
�2

, w1y = w0	1 + � z1y
*

L1y
�2

. �32�

Here we have chosen different waists, w1x and w1y, in
order to deal with a more general situation. Because of the
isotropy in vacuum, we can easily obtain z1x

* =z1y
* =z and

w1x=w1y. The corresponding Rayleigh lengths are given by
L1x=L1y =zR.

We are now in a position to investigate the field in region
2. In fact, the field in the first boundary can be easily ob-
tained from Eq. �31� by choosing z=a. Substituting the field
into Eq. �23�, the angular spectrum distribution can be ob-
tained as

Ẽ2�k�� =
w0E0

	2�
exp�−

k0w0
2 + 2ia

4k0
�kx

2 + ky
2�� . �33�

For simplicity, we assume that the wave propagates through
the boundary without reflection. Substituting Eq. �33� into
Eq. �21�, the field in the QIMM slab can be written as

E2�r�,z2
*� =

w0E0

	w2xw2y

exp�− � x2

w2x
2 +

y2

w2y
2 � + i�2 , �34�

w2x = w0	1 + � z2x
*

L2x
�2

, w2y = w0	1 + � z2y
*

L2y
�2

. �35�

Here z2x
* =z− �1−nx�a and z2y

* =z− �1−ny�a. The interesting
point we want to stress is that there are two different Ray-
leigh lengths, L2x=nxk0w0

2 /2 and L2y =nyk0w0
2 /2, that charac-

terize the spreading of the beam in the direction of x and y
axes, respectively. A further important point should be noted
that we have introduced the negative Rayleigh length. The
inherent physics underlying the negative Rayleigh length is
the waves undergo a negative phase velocity in the QIMM
slab. As can be seen in the following, the negative Rayleigh
length will give rise to the corresponding reverse Gouy phase
shift.

Finally we want to explore the field in region 3. The field
in the second boundary can be easily obtained from Eq. �34�
under choosing z=a+d. Substituting the field into Eq. �23�,
the angular spectrum distribution can be written as

Ẽ3�k�� =
w0E0

	2�
exp�− �nxk0w0

2 + 2inxa + 2id

4nxk0
kx

2

+
nyk0w0

2 + 2inya + 2id

4nyk0
ky

2� . �36�

Substituting Eq. �36� into Eq. �21�, the field in the region 3 is
given by

E3�r�,z3
*� =

w0E0

	w3xw3y

exp�− � x2

w3x
2 +

y2

w3y
2 � + i�3 , �37�

w3x = w0	1 + � z3x
*

L3x
�2

, w3y = w0	1 + � z3y
*

L3y
�2

. �38�

Here z3x
* =z− �1−1/nx�d and z3y

* =z− �1−1/ny�d. The corre-
sponding Rayleigh lengths given by L3x=L3y =k0w0

2 /2, that
denote the beam exhibit the same diffraction distance in the
direction of x and y axes. The effect of the anisotropic dif-
fraction is that these two beam widths keep their difference
even if the Rayleigh lengths, L3x and L3y, are equal, implying
that generally the Gaussian beam is astigmatic.

Up to now, the fields are determined explicitly in the three
regions. Comparison of Eq. �34�, Eq. �37� with Eq. �31�
shows that the field distributions in region 2 and region 3
may no longer remain Gaussian. We take the image position
z=a+d+b to be the place of the second focusing waist. For
the purpose of illustration, the intensity distribution in the
object plane is plotted in Fig. 5�a�. In general, the shape of
intensity distribution is distorted in the image plane as shown
in Figs. 5�b� and 5�c�. Careful evaluation of Eq. �37� reveals
that the secret underlying the intensity distortion is the an-
isotropic diffraction.

Now, the most obvious question is whether the intensity
distribution at the object plane can be completely recon-
structed at the image plane. In the next step, we want to
explore the matching condition of focusing. We can easily
obtain the place of the focusing waist by choosing zi

*=0. Let
us assume the incident beam waist locates at plane z=0. To
eliminate the astigmatic effect, the beam waists should locate
at the same place, namely z3x

* =z3y
* . Using these criterions, the

matching condition for focusing can be written as

�y�z�a + b� + �	�x�yd = 0, �x = �y . �39�

Under the focusing matching condition, the intensity distri-
bution at the object plane can be completely reconstructed at
the image plane as shown in Fig. 5�d�. A further point should
be noted that the thickness of the QIMM slab should satisfy
the relation d���y�za /	�x�y, otherwise there is neither an
internal nor an external focus.

V. PHASE COMPENSATION BY POLARIZATION
INSENSITIVE LENS

In this section, we attempt to investigate the matching
condition for phase compensation. In isotropic LHM, plane
waves can propagate with negative phase velocity directed
opposite to the direction of the Poynting vector. Hence the
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phase difference can be compensated by the LHM slab
�1,20,27�. However, the negative tensor parameters associ-
ated with QIMM provides a wealth of opportunities for ob-
serving and exploiting negative phase-velocity behavior.

First let us investigate the phase distribution in region 1.
A more rigorous calculation of Eq. �31� gives

�1 = k0z + � k0x2

2R1x
+

k0y2

2R1y
� − 1, �40�

R1x = z1x
* +

L1x
2

z1x
* , R1y = z1y

* +
L1y

2

z1y
* , �41�

1 = −
1

2
�arctan

z1x
*

L1x
+ arctan

z1y
*

L1y
� . �42�

Here R1x and R1y are the radius of curvature. Because of the
isotropy in vacuum, we can easily find R�z1x

* �=R�z1y
* �. The

Gouy phase shift in vacuum is given by 1.
Next, we attempt to explore the phase distribution in re-

gion 2. Matching the boundary condition, the phase term in
Eq. �34� can be written as

�2 = k0a + �	�y�xk0�z − a� +
k0x2

2R2x
+

k0y2

2R2y
− 2, �43�

R2x = z2x
* +

L2x
2

z2x
* , R2y = z2y

* +
L2y

2

z2y
* , �44�

2 = −
1

2
�arctan

z2x
*

L2x
+ arctan

z2y
*

L2y
� . �45�

The Gouy phase shift in QIMM is given by Eq. �45�. We
should mention that there are two different radius of curva-
ture, R2x and R2y, that characterize the beam undergoing dif-
ferent diffraction effects in the direction of x and y axes,
respectively.

Now, we are in the position to explore the phase distribu-
tion in region 3. Analogously, we make some serious calcu-
lation of Eq. �37�, then obtain the phase distribution

�3 = �	�y�xk0d + k0�z − d� +
k0x2

2R3x
+

k0y2

2R3y
− 3, �46�

FIG. 5. �Color online� The numerically computed intensity distribution in object and image planes. �a� the intensity distribution for
normal Gaussian beam in object plane. The in tensity distribution in image plane for Gaussian beam propagating through the QIMM slab
with different anisotropic parameters: �b� nx=−1, ny =−2. �c� nx=−2, ny =−1. �d� nx=−1, ny =−1. We can easily find the intensity distribution
at the object plane can be completely reconstructed at the image plane.
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R3x = z3x
* +

L3x
2

z3x
* , R3y = z3y

* +
L3y

2

z3y
* , �47�

3 = −
1

2
�arctan

z3x
*

L3x
+ arctan

z3y
*

L3y
� . �48�

The radius of curvatures are given by Eq. �47� and the cor-
responding Gouy phase shift is given by Eq. �48�. The an-
isotropic effect result in the two radius of curvatures keep
their difference even if the Rayleigh lengths are equal.

It is known that an electromagnetic beam propagating
through a focus experiences an additional � phase shift with
respect to a plane wave. This phase anomaly was discovered
by Gouy in 1890 and has since been referred to as the Gouy
phase shift �32,33�. It should be mentioned that there exists
an effect of accumulated Gouy phase shift when a beam
passing through an optical system with positive index
�34–36�. While in the QIMM slab system we expect that the
phase difference caused by Gouy phase shift can be compen-
sated by that caused by the inverse Gouy shift in the QIMM
slab.

We might suspect whether the phase difference caused by
the Gouy phase shift in vacuum can be compensated by that
caused by the inverse Gouy phase shift in QIMM slab. To
obtain the better physical picture, the schematic distribution
of phase fronts are plotted in Fig. 6. The phase fronts of a
focused Gaussian beam are plotted with solid lines, and the
phase fronts of a perfect spherical wave are depicted with the
dashed lines. The phase difference on the optical axis is
caused by the Gouy phase shift. The inherent secret under-
lying the reverse Gouy phase shift in the QIMM slab is the
waves undergoing a negative phase velocity.

Let us investigate what happens if we consider the phase
difference caused by the Gouy shift. Under the focusing
matching conditions, the phase difference caused by the
Gouy phase shift in the three regions are

�1 = − arctan
a

zR
,

�2 = arctan
a

zR
+ arctan

b

zR
,

�3 = − arctan
b

zR
. �49�

The first and third equations dictate the phase difference
caused by the Gouy shift in regions 1 and 3, respectively.
The second equation denotes the phase difference caused by
the inverse Gouy phase shift in the QIMM slab. Subsequent
calculations of Eq. �49� show

�1 + �2 + �3 = 0. �50�

This implies that the phase difference caused by the Gouy
phase shift in vacuum can be compensated by the counterpart
caused by the inverse Gouy phase shift in the QIMM slab.
Therefore the condition for phase compensation can be sim-
ply written as

�a + b�k0 + �	�y�xdk0 = 0. �51�

The first term in Eq. �51� is the phase deference caused by
the plane wave in vacuum, and the other term is the phase
deference caused by the plane wave in the QIMM slab.

For the purpose of illustration, the phase distribution in
object plane is plotted in Fig. 7�a�. Generally, the phase dis-
tributions in image plane is distorted as shown in Figs. 7�b�
and 7�c�. As mentioned above, the phase distortion is caused
by the effect of anisotropic diffraction. To cancel the phase
distortion, the beam waists should locate at the same place,
namely z3x

* =z3y
* . Under the phase matching condition, the

phase distribution at the object plane can also be completely
reconstructed at the image plane as depicted in Fig. 7�d�.

Now an interesting question naturally arises: whether the
matching conditions of focusing and the phase compensation
can be satisfied simultaneously. Clearly, if we seek a solution
satisfying Eqs. �39� and �51�, the only possibility is

�x = �y, �y�z = 1. �52�

Under the matching conditions, the intensity and phase dis-
tributions at the object plane can be completely reconstructed
at the image plane.

It should be mentioned that, for the QIMM slab with
double-sheeted hyperboloid wave-vector surface, both E-
and H-polarized beams can also exhibit the same intensity
and phase reconstructed effect. Because of the positive phase
velocity embedded in this type of QIMM, the paraxial beam
will experience the positive Rayleigh distance and Gouy
phase shift. Therefore the accumulated phase delay effect
gives rise to a large phase deference between the object and
image planes.

VI. THE TRANSMISSION OF EVANESCENT WAVES

In this section, we discuss under what conditions anoma-
lous transmission will occur when an evanescent wave is

FIG. 6. The phase difference caused by the Gouy phase shift in
vacuum can be compensated by that caused by the inverse Gouy
phase shift in the QIMM slab. The phase fronts of Gaussian beam
�solid lines� differ from those of a perfect spherical wave �dashed
lines�.
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transmitted through the QIMM slab. It is well known that
when an evanescent wave is transmitted through a slab of
regular media with simultaneously positive permittivity and
permeability, the amplitude of the transmitted wave will de-
cay exponentially as the thickness of the slab increases.
While an evanescent wave transmitted through an isotropic
LHM slab, the amplitude of the transmitted wave would be
amplified exponentially. This anomalous transmission of
evanescent waves is a very peculiar property of LHM and it
may lead to subwavelength image �20,37�.

Now we will explore what happens when the evanescent
wave transmission is through the QIMM slab. For
E-polarized incident waves, the incident and reflected fields
in region 1 can be written as

E1 = E0ey exp�i�kxx + kzz�� + REE0ey exp�i�kxx − kzz�� ,

�53�

where RE is the reflection coefficient. Some of the incident
wave is transmitted into the QIMM slab, and conversely a
wave inside the QIMM slab incident on its interfaces with
the surrounding vacuum also experiences transmission and
reflection, so the electric field of the wave inside the slab is
given by

E2 = rE0ey exp�i�qx
Ex + qz

Ez�� + tE0ey exp�i�qx
Ex − qz

Ez�� .

�54�

Here r and t are coefficients which need to be determined by
boundary conditions �12�. Matching the boundary conditions
for each wave-vector component at the plane z=a+d gives
the propagation field in the form

E3 = TEE0ey exp�iqx
Ex + qz

E�z − d�� , �55�

where TE is the overall transmission coefficient. The z com-
ponent of the wave vectors of evanescent waves can be
found by the solution of Eq. �6�, which yields

qz
E = i	�x

�z
qx

2 − �y�xk0
2, qz

H = i	�x

�z
qx

2 − �x�yk0
2, �56�

for E- and H-polarized waves, respectively.
By matching the electric and magnetic fields at the two

interfaces between the QIMM slab and the surrounding
vacuum, the coefficients in Eqs. �53�–�55� can be deter-
mined. We can get that the overall transmission through both
surfaces of the QIMM slab is given by

FIG. 7. �Color online� The numerically computed phase distribution in object and image planes. �a� The phase distribution in object
plane. The phase distribution in image plane after the Gaussian beam propagating through the QIMM slab with different anisotropic
parameters: �b� nx=−1, ny =−2; �c� nx=−2, ny =−1; �d� nx=−1, ny =−1. The phase distribution can be completely reconstructed at the image
plane. The parameters are the same as in Fig. 5.
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TE =
4�xkzqz

E exp�iqz
Ed�

��xkz + qz
E�2 − �qz

E − �xkz�2 exp�2iqz
Ed�

, �57�

From Eq. �57� we can see that in general cases, when an
evanescent wave is transmitted through a QIMM slab, its
amplitude will decay exponentially as the thickness of the
slab increases. But if the following conditions are satisfied:

�x 
 0, �z 
 0, �y 
 0, �58�

�x�z = 1, �y�z = 1, �59�

the amplitude of the transmitted evanescent wave will be
amplified exponentially by the transmission process through
the QIMM slab. From Eq. �57�, we can see that if the con-
ditions �58� and �59� are satisfied, the overall transmission
coefficient TE will be equal to exp�
qz

E
d�, hence the ampli-
tude of the transmitted evanescent wave will be amplified
exponentially as the thickness of the QIMM slab increases.
Note that the conditions mentioned above are sightly differ-
ent from those as Hu and Chui have obtained �12�.

As for H-polarized evanescent waves, the overall trans-
mission through both interfaces of the QIMM slab can be
obtained by similar procedures, and we can get the overall
transmission coefficient,

TH =
4�xkzqz

H exp�iqz
Hd�

��xkz + qz
H�2 − �qz

H − �xkz�2 exp�2iqz
Hd�

. �60�

From Eq. �60�, we can see that in general cases, the ampli-
tude of the transmitted H-polarized evanescent waves will
also decay exponentially as the thickness of the QIMM slab
increases. But if the following conditions are satisfied, the
overall transmission coefficient TH will be equal to
exp�
qz

H
d�, and the amplitude of the transmitted H-polarized
evanescent wave will be amplified exponentially by the
transmission process through the QIMM slab. So for
H-polarized evanescent waves,

�x 
 0, �z 
 0, �y 
 0, �61�

�z�x = 1, �z�y = 1, �62�

if conditions �61� and �62� are satisfied, the QIMM slab will
enhance exponentially the transmitted waves. Comparing
�58� and �59� with �61� and �62�, we find that in the presence
of QIMM, the conditions for E-polarized means automati-
cally the conditions for H-polarized are satisfied. Hence the
QIMM also exhibit the significant insensitive effect for eva-
nescent waves. We stress that, for the QIMM slab with
double-sheeted hyperboloid dispersion relation, the evanes-
cent waves cannot be amplified.

In the above analysis the permittivity and permeability
tensor elements are assumed to be lossless. However the ef-
fect of absorption, necessarily present in such materials, may
drastically suppress any evanescent amplifying wave into a
decaying one �38,39�. Comparing Fig. 8�a� with Fig. 8�b�
suggests that large d is not favored for the amplification of
the evanescent wave inside the QIMM slab. It is also clearly
seen from Figs. 8�a� and 8�b� that a low reflection occurs at
the interfaces, since the QIMM slab is supposed to be well

satisfied by the conditions �58� and �59�. So far we have
shown the simulation results of the evanescent wave inter-
acting with QIMM slabs with different absorptions and
thicknesses. We find that the suppression of evanescent-wave
amplification can be effectively relaxed by reducing the
thickness of the QIMM slab. The numerical examples pro-
vide direct evidence that an evanescent wave could be am-
plified in a QIMM slab with finite absorption. Unfortunately,
the loss of a realistic metamaterial could not be reduced to a
very small level �40�. Therefore, the thickness of the QIMM
slab should be much smaller than the wavelength in order to
realize the subwavelength imaging for such a system.

As a result of the amplification of evanescent waves in-
side the lossy QIMM slab, superlensing effect with subwave-
length image resolution could be achieved practically. While
the main effect of anisotropy associated with QIMM will
limit the resolution of the image. Although the image is im-
perfect, we trust that the reconstruct effect of intensity and
phase in paraxial regime will lead to some potential applica-
tions. Several recent developments make the polarization in-
sensitive lens a practical possibility. Some time ago it was
shown that a double-periodic array of pairs of parallel gold
nanorods will exhibit negative permittivity and permeability
in the optical range �41,42�. Another extremely promising
material has been previously explored in certain designs of

FIG. 8. An evanescent wave �kx=2k0� interacting with a QIMM
slab �a� d=0.2�, �b� d=0.4�. The QIMM with different values of
absorption �e=�m=�, ranging from 0.001 to 0.1. The QIMM slab is
supposed to be well satisfied by the conditions �x=�y =−0.8−�i and
�z=−1.25−�i. The vertical gray lines denote the two surfaces of
the QIMM slab.
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photonic crystals, which can be effectively modelled with
anisotropic permittivity and permeability tensors �43–45�.
Experimentally, the goal to realize the insensitive lens,
chiefly lies in reducing the loss of QIMM. Practical polariza-
tion insensitive lens will require the frequency independent,
a great challenge to the designers is to realize the negative
material parameters in a wide band. The recent developments
lead us to be optimistic that the polarization insensitive lens
can be designed in future.

VII. CONCLUSIONS

In conclusion, we have proposed how to employ the
QIMM slab to create a polarization insensitive lens, in which
both E- and H-polarized waves exhibit the same refocusing
effect. For shallow incident angles the QIMM slab will pro-
vide some degree of refocusing in the same manner as an
isotropic negative index material. We have investigated the
focusing and phase compensation of paraxial beams by the
QIMM slab. We have introduced the concepts of inverse
Gouy phase shift and negative Rayleigh length of paraxial
beams in QIMM. We have shown that the phase difference
caused by the Gouy phase shift in vacuum can be compen-

sated by that caused by the inverse Gouy phase shift in the
QIMM slab. If certain matching conditions are satisfied, the
intensity and phase distributions at object plane can be com-
pletely reconstructed at the image plane. The QIMM slab
exhibits the significant insensitive effect for both transmitted
and evanescent waves. Our simulation results show that the
superlensing effect with subwavelength image resolution
could be achieved in the form of a QIMM slab. We wish the
essential physics described in this paper will provide refer-
ence in the road to construct the polarization insensitive lens.
We trust that the significant insensitive properties will lead to
further effects and applications.
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